
ADSI – TEMA 5

Análisis

Índice

◼ Transformación del Modelo del Dominio

❑ En una Base de Datos

❑ En un Diagrama de Clases

◼ Diagrama de comunicación

◼ Arquitectura

Transformación del MD

◼ Tenemos que decidir qué tipo de sistema

vamos a desarrollar

❑ Usando una Base de Datos relacional

◼ Tendremos que definir las tablas, sus claves primarias,

sus claves extranjeras, etc.

❑ Orientado a Objetos

◼ Tendremos que definir las clases, sus atributos, etc.

❑ Ambas

◼ Tendremos que definir todo lo anterior

Es lo más común

Transformación del MD en BD

◼ Cada entidad se transforma en una tabla con

su propia clave primaria

Si no tiene un

atributo que

sirva como

clave, añadimos

uno en la tabla

Transformación del MD en BD

◼ Si hay herencia, la clave primaria del padre

pasa a los hijos como clave extranjera

Transformación del MD en BD

◼ Una relación binaria.. Depende de la

cardinalidad de la relación

❑ 1..* ► La clave de la parte 1, pasa a la tabla de la

parte * como clave extranjera

Transformación del MD en BD

◼ Una relación binaria.. Depende de la

cardinalidad de la relación

❑ *..* ► Se crea una tabla intermedia cuya clave

está formada por la combinación de las claves

primarias de las tablas de la relación

Transformación del MD en BD

◼ Si hay una entidad asociación, sus atributos

“viajan” con las claves

Transformación del MD en BD

◼ Si hay una entidad asociación, sus atributos

“viajan” con las claves

Transformación del MD en BD

◼ Una relación múltiple se convierte en una

tabla cuya clave principal es la combinación

de las claves primarias de las entidades de la

relación

Transformación del MD en BD

◼ Si en la relación múltiple hay atributos, estos

van a la nueva tabla

Transformación del MD en BD

◼ Ejemplo

Transformación del MD en BD

◼ Ejemplo

Transformación del MD en DC

◼ Cada entidad será una clase con sus

atributos y el tipo de datos correspondiente

Transformación del MD en DC

◼ Las relaciones binarias hay 3 formas de

implementarlas, elegir entre una u otra

depende la funcionalidad que tenga el

sistema

❑ Implementar la relación en un lado (Cliente)

❑ Implementar la relación en el otro lado (Inmueble)

❑ Implementar la relación en los dos lados

Las 3 son igual

de correctas

Transformación del MD en DC

◼ Las relaciones, se implementarán en forma

de Atributos o de Listas de Elementos

◼ Una vez decidido en qué lado se implementa

(puede ser en los dos)
◼ Si la cardinalidad de la relación EN EL LADO

CONTRARIO es 1, lo implementaremos mediante un

atributo

◼ Si la cardinalidad de la relación EN EL LADO

CONTRARIO es *, lo implementaremos mediante una

lista de elementos

Transformación del MD en DC

◼ Implementar la relación en un lado (Cliente)

❑ Como un cliente ha visitado * Inmuebles, se

implementa mediante una lista

Transformación del MD en DC

❑ Ventajas:

◼ Dado un cliente se puede ver fácilmente qué inmuebles

ha visitado.

◼ Añadir una visita, consiste en añadir a la lista, la

referencia del inmueble

❑ Desventajas:

◼ Dado un inmueble no se puede ver fácilmente quién lo ha

visitado

Transformación del MD en DC

◼ Implementar la relación en el otro lado

(Inmueble)

❑ Como un inmueble ha podido ser visitado por *

Clientes, se implementa mediante una lista

Transformación del MD en DC

❑ Ventajas:

◼ Dado un Inmueble se puede ver fácilmente quién lo ha

visitado.

◼ Añadir una visita, consiste en añadir a la lista, la

referencia al Cliente.

❑ Desventajas:

◼ Dado un cliente no se puede ver fácilmente qué

Inmuebles ha visitado

Transformación del MD en DC

◼ Implementar la relación en ambos lados

❑ Como las dos cardinalidades son *, se implementa

mediante dos listas

❑ Ventajas:

◼ Puedo saber fácilmente toda la información.

❑ Desventajas:

◼ Añadir una visita supone actualizar las dos listas.

Transformación del MD en DC

◼ Si hay herencia cada entidad será una clase y

desde las clases hijas se accederá a los

atributos y operaciones del padre gracias a los

mecanismos de la OO

Transformación del MD en DC

◼ Si hay una asociación, se trata como si fuera

una entidad con sentido de manera

independiente

Es un paso intermedio, no figura en ningún sitio

Transformación del MD en DC

◼ Una relación múltiple se trata como si fuera

una nueva entidad Es un paso intermedio, no figura

en ningún sitio

Transformación del MD en DC

◼ Si en la relación hay atributos, estos van a la

nueva clase

Transformación del MD en DC

◼ Ejemplo

Transformación del MD en DC

◼ Ejemplo

Diagrama de comunicación

◼ Hasta UML 1.4 llamado Diagrama de

colaboración

◼ Esta Fase está especialmente orientada a su

uso con Orientación a Objetos

◼ Se obtendrán más clases para añadir al

diagrama de clases → Controlador

◼ Se obtendrá qué operaciones se necesitan

en cada clase

Diagrama de comunicación

◼ Se pueden hacer patentes nuevas

necesidades de relación entre las clases

◼ Se va analizar teniendo en mente la

separación entre

❑ Vista (Interfaces)

❑ Modelo (Datos)

❑ Controlador (Lógica)

Trabajaremos con una adaptación de los patrones

MVC (Modelo – Vista – Controlador)

MVP (Modelo – Vista – Presentador)

Diagrama de comunicación

◼ Las clases de la vista sólo deben trabajar con

tipos de datos simples

◼ De este modo, son independientes

❑ No hay que modificarlas si cambia el

funcionamiento interno

❑ Se pueden reutilizar

❑ Se pueden desarrollar distintas interfaces

intercambiables
▪ Una web

▪ Una app

▪ Un programa Java

Diagrama de comunicación

◼ Para devolver información estructurada a la

Vista usaremos JSON

◼ JSON es un formato textual formado por

pares nombre : valor entre llaves

◼ Los valores pueden ser

❑ Entero: { edad: 21 }

❑ String: { nombre: “Iker” }

❑ Boolean: { aprobado: True }

❑ Array: { aficiones: [“cine”, “deporte”, “música”] }

❑ Objeto JSON: { est: {nombre: “Iker” , edad: 21, aprobado: True} }

LA VISTA (LA INTERFAZ) NO

DEBERÍA TRABAJAR CON

OBJETOS

Diagrama de comunicación

◼ Vamos a trabajar con una separación

Modelo-Vista-Controlador estricta

❑ Facilitará la modificación de alguna parte sin

afectar al resto

Interacciones permitidas

VISTA CONTROLADOR MODELO

Diagrama de comunicación

◼ En el Diagrama de comunicación se

representa

❑ Las clases involucradas en la ejecución de un

Caso de Uso

❑ Las comunicaciones que se producen entre

dichas clases

Clase 1

Clase 1 Clase 2
1:mensaje (param): resultado →

Diagrama de comunicación

◼ Las comunicaciones siguen el formato:

orden : nombre (parámetros)

❑ Orden: Número que indica el orden de ejecución

❑ Nombre: nombre de la operación

❑ Parámetros: parámetros necesarios en la

operación

ListaEstudiantes Estudiante
1:getNombre () : string→

Diagrama de comunicación

◼ El orden puede ir anidándose para indicar

“subpasos” de una operación

ListaEstudiantes

Estudiante

1.1:getNombre ():string →

1.2:getApellidos ():string →
IU_MostrarEstudiantes

1:MostrarDatosEstudiante () →

public void MostrarDatosEstudiante(){
String Nom;
String Ap;
...

Nom= est.getNombre();
Ap= est.getApellidos();

...
}

public String getNombre(){
return this.nombre;

}

public String getApellidos(){
return this.apellidos;

}

Diagrama de comunicación

◼ Las interacciones de los actores también

aparecen en el diagrama de comunicación

ListaEstudiantes

Estudiante

IU_MostrarEstudiantes

2:MostrarDatosEstudiantes () →

Usuario

1: Pulsar “Listar Estudiantes” →

2.1:getNombre ():string →

2.2:getApellidos ():string →

Diagrama de comunicación

◼ Se puede indicar el resultado de una

operación

❑ Se recomienda usarlo solo cuando se considera

estrictamente necesario para una mejor

comprensión del diagrama

ListaEstudiantes Estudiante
1.1:getNombre () →

1.2:return nombre

ListaEstudiantes Estudiante
1:getNombre (): string →

Diagrama de comunicación

◼ En las devoluciones a la interfaz

especificaremos la estructura del JSON

IU_MostrarEstudiantes ListaEstudiantes
1:MostrarDatosEstudiantes (): JSON →

{estudiantes : [{ nombre:string,

apellidos: string,

edad: int}

,…]

}

Diagrama de comunicación

◼ El resultado de una operación se puede

recoger en una variable y usarla más

adelante

ListaEstudiantes Estudiante
1: nom= getNombre () →

x: operación (nom) →

Diagrama de comunicación

◼ Se pueden indicar condiciones, pero es

mejor hacer diagramas de comunicación

distintos para cada situación

ListaEstudiantes Estudiante
1: edad= getEdad() →

x [edad>18]: operación (nom) →

Sólo se ejecuta cuando la condición es True

Diagrama de comunicación

◼ También se pueden indicar repeticiones

ListaEstudiantes Estudiante
1: Matricula= getListaAsignaturas() →

x :*[para cada asignatura en Matricula] operación (nom) →

El asterisco indica repetición

Diagrama de comunicación. Ejemplo

◼ Caso de uso : Tomar libro prestado

❑ Flujo de eventos:
◼ El usuario introduce la signatura del libro y su número

de socio

◼ Si no hay ninguna copia libre
❑ Se le avisa al usuario

◼ Si hay alguna copia libre
❑ Si el usuario ha llegado al máximo de prestamos

▪ Se le avisa

❑ Si no ha llegado al máximo

▪ Se almacena el nuevo préstamo y se le muestra por

pantalla el código de la copia que se le presta

Diagrama de comunicación. Ejemplo

◼ Caso de uso : Tomar libro prestado

❑ Prototipo de la interfaz

CASO DE USO: TOMAR COPIA LIBRO EN PRÉSTAMO

Área de texto donde aparecerá el número de copia del libro que se

ha tomado en préstamo.

Si no hay ninguna libre o si el socio ha sobrepasado su número

máximo de préstamos entonces se indicará aquí mismo.

CancelTOMAR EN PRÉSTAMO RESERVAR LIBRO

SIGNATURA LIBRO:

NÚMERO SOCIO:

La Vista

Diagrama de comunicación. Ejemplo

◼ Caso de uso : Tomar libro prestado

❑ Modelo del dominio

Libro Copia_Libro

Socio

1 1..*

0..*

0..*

-Signatura -CodCopiaLibro

-Libre?

-NumSocio

Prestamo

-Fecha

Diagrama de comunicación. Ejemplo

◼ Caso de uso : Tomar libro prestado

❑ Voy a ignorar la persistencia de la información y

voy a suponer que tengo toda la información

cargada en objetos

◼ Diagrama de clases

Copia_Libro

Socio

Libro

-Signatura:String

-SusCopias:ListaCopia_Libro

Prestamo

-Qué: Copia_Libro

-Aquién : Socio

-Fecha: Date

El Modelo

-CodCopiaLibro:int

-Libre?:boolean

-NumSocio:Int

-SusPrestamos: ListaPrestamo

Diagrama de comunicación. Ejemplo

◼ Caso de uso : Tomar libro prestado

❑ Falta el Controlador

◼ Serán las clases que contengan la lógica del caso de

uso

◼ Recogerán lo que ocurra en la interfaz y trabajarán con

el modelo

◼ Tendrán una única instancia (MAEs)

◼ Pueden contener una lista de objetos que gestionar

◼ Cuántas y cuales poner depende del diseño

Diagrama de comunicación. Ejemplo

:IU_TLP

Usuario

1 →

1: Introduce datos y pulsa “Tomar en Préstamo”

Diagrama de comunicación. Ejemplo

:IU_TLP

Usuario

:Biblioteca
1 → 2 →

Usamos una única clase

que actuará de frontera

entre la Vista y el

Controlador. Será la única

que conozca “las tripas”

del controlador y facilitará

el mantenimiento y la

ampliación del sistema

1: Introduce datos y pulsa “Tomar en Préstamo”

2: TomarLibroPrestamo (signatura,numsocio)

Diagrama de comunicación. Ejemplo

:IU_TLP

Usuario

:GestorLibros

:Biblioteca
1 → 2 →

2.1 →

1: Introduce datos y pulsa “Tomar en Préstamo”

2: TomarLibroPrestamo (signatura,numsocio)

2.1: laCopiaLibre=BuscarCopiaLibre (signatura)

Para encontrar una copia a

partir de la signatura, primero

hay que encontrar el libro.

El GestorLibros

conoce la

referencia a todos

los libros que

existen en el

sistema (la clase

necesita un

atributo para

agruparlos)

Diagrama de comunicación. Ejemplo

:IU_TLP

Usuario

:GestorLibros

:Libro

:Biblioteca
1 → 2 →

2.1 →

1: Introduce datos y pulsa “Tomar en Préstamo”

2: TomarLibroPrestamo (signatura,numsocio)

2.1: laCopiaLibre=BuscarCopiaLibre (signatura)

2.1.1: getSignatura() : String

Se recorren todas las instancias que existan de Libro obteniendo su

signatura y comparándola con la dada para encontrar la instancia

concreta con la que tenemos que trabajar

2.1.1 →

NO SE PUEDE ACCEDER

DIRECTAMENTE A UNA

INSTANCIA CONCRETA

CONOCIENDO EL VALOR DE

UNO DE SUS ATRIBUTOS

Diagrama de comunicación. Ejemplo

:IU_TLP

Usuario

:GestorLibros

:Libro

:Biblioteca
1 → 2 →

2.1 →

2.1.1 →

2.1.2 →

1: Introduce datos y pulsa “Tomar en Préstamo”

2: TomarLibroPrestamo (signatura,numsocio)

2.1: laCopiaLibre=BuscarCopiaLibre (signatura)

2.1.1: getSignatura() : String

2.1.2: ObtenerCopiaLibre(): Copia_Libro

Una vez encontrada la instancia concreta, ejecutamos una operación que nos devuelva una

copia de ese libro que esté libre. Podemos hacerlo así porque el Libro tiene la referencia a

SusCopias

Diagrama de comunicación. Ejemplo

:IU_TLP

Usuario

:GestorLibros

:Libro

:Copia_Libro:Biblioteca
1 → 2 →

2.1 →
2.1.2.1 

1: Introduce datos y pulsa “Tomar en Préstamo”

2: TomarLibroPrestamo (signatura,numsocio)

2.1: laCopiaLibre=BuscarCopiaLibre (signatura)

2.1.1: getSignatura() : String

2.1.2: ObtenerCopiaLibre(): Copia_Libro

2.1.2.1: getLibre?() : boolean

2.1.1 →

2.1.2 →

La operación de la clase Libro recorrerá las instancias recogidas en el atributo

SusCopias hasta que encuentre una libre

Diagrama de comunicación. Ejemplo
1: Introduce datos y pulsa “Tomar en Préstamo”

2: TomarLibroPrestamo (signatura,numsocio)

2.1: laCopiaLibre=BuscarCopiaLibre (signatura)

2.1.1: getSignatura() : String

2.1.2: ObtenerCopiaLibre(): Copia_Libro

2.1.2.1: getLibre?() : boolean

2.2: elSocio= BuscarSocio (numsocio)

2.2.1: getNumSocio() :int

2.3: ComprobarNumeroPrestamos (elSocio)

2.3.1: getMaximo?() :boolean

2.4: AlmacenarPrestamo (elSocio,laCopiaLibre)

2.4.1: new (elSocio, laCopiaLibre, now())

2.4.2: setLibre(False)

2.5: ObtenerCodCopia (laCopiaLibre)

2.5.1: getCodCopia(): int

Para poder mostrarlo en

la interfaz

Hay que buscar

el objeto que se

corresponde a

ese numsocio

Comprobando

cuántos

prestamos tiene

en su lista

La fecha actual

siempre está

disponible

Diagrama de comunicación. Ejemplo

:IU_TLP

Usuario

:GestorLibros

:GestorPrestamos

:GestorSocios

:Libro

:Copia_Libro

:Prestamo

:Socio

:Biblioteca
1 → 2 →

2.1 →

2.1.1 →

2.1.2 →

2.1.2.1 

2.2 →

2.3 →

2.2.1 →

2.3.1 →

2.4 →

2.5 →

2.4.1 →

2.4.2 →

2.5.1 →

MODELOVISTA CONTROLADOR

Diagrama de comunicación. Ejemplo

:IU_TLP

Usuario

:GestorLibros

:GestorPrestamos

:GestorSocios

:Libro

:Copia_Libro

:Prestamo

:Socio

:Biblioteca

Diagrama de comunicación

◼ Se pueden usar estereotipos de las clases, y

de este modo indicar qué tipo de clases son

◼ Existen 3 estereotipos:

❑ Clase Frontera (Vista)

❑ Clase Control (Controlador)

❑ Clase Entidad (Modelo)

Diagrama de comunicación. Ejemplo

Usuario

1 → 2 →

2.1 →

2.1.1 →

2.1.2 →

2.1.2.1 

2.2 →

2.3 →

2.2.1 →

2.3.1 →

2.4 →

2.5 →

2.4.1 →

2.4.2 →

2.5.1 →

:IU_TLP :BIblioteca

:GestorLibros

:GestorPrestamos

:GestorSocios

:Libro

:Copia_Libro

:Prestamo

:Socio

Diagrama de comunicación
◼ A partir del diagrama de comunicación obtenemos el

diagrama de clases necesario para ese caso de uso

Libro

-Signatura: String

-SusCopias:ListaCopia_Libro

-getSignatura():String

-ObtenerCopiaLibre(): Copia_Libro

Copia_Libro

-CodCopiaLibro: int

-Libre?: boolean

-getLibre?(): Boolean

-setLibre(valor:boolean)

-getCodCopia(): int

Socio

-Numsocio:int

-susPrestamos: ListaPrestamo

-getNumSocio():int

-getMaximo?():boolean

Prestamo

-Qué: Copia_Libro

-Aquién : Socio

-Fecha: Date

-Prestamo (aquien:Socio, que: Copia_Libro, cuando: Date)

Biblioteca

-TomarLibroPrestamo (signatura: string, numsocio: int)

GestorLibros

-TodosLibros: ListaLibros

-BuscarCopiaLibre (signatura:string): Copia_Libro

GestorPrestamos

-AlmacenarPrestamo (aquien:Socio, que: Copia_Libro)

-ObtenerCodCopia(cual:Copia_Libro)

GestorSocios

-TodosSocios: ListaSocios

-BuscarSocio (num:int) : Socio

-ComprobarNumeroPrestamos(quien:Socio)

Diagrama de comunicación

◼ A partir del diagrama de clases necesario

para cada caso de uso

❑ Se unifican tomando decisiones

◼ Dónde colocar los atributos

◼ Qué clases de control utilizar

◼ Qué operaciones situar en cada clase de control

◼ Qué operaciones se pueden reutilizar

◼ Se obtiene un único diagrama de clases para

todo el sistema

Modelo usando un SGBD relacional

◼ La Orientación a Objetos no proporciona

persistencia de los datos

◼ Para lograr persistencia incluiremos una BBDD

◼ Nuestros diagramas serán independientes del

SGBD relacional que usemos para almacenar

los datos
◼ MySQL

◼ Oracle

◼ Access

◼ ….

Modelo usando un SGBD relacional

◼ Cuando el sistema arranca, los datos están

almacenados en la Base de Datos

◼ Cuando el sistema finaliza, los datos tienen

que estar actualizados en la Base de Datos

◼ Cuando el sistema está funcionando, los

datos pueden estar

❑ Cargados en objetos

❑ Almacenados en la Base de Datos

Modelo usando un SGBD relacional

◼ Elegir el momento en el que los datos de la

Base de Datos se cargan en los objetos (si

se hace) es una decisión del análisis/diseño

◼ Elegir cuándo se actualizan los datos de los

objetos en la Base de Datos (es obligatorio

hacerlo) es decisión del análisis/diseño

◼ Razones a tener en cuenta

❑ Eficiencia

❑ Necesidades de actualización en tiempo real

Modelo usando un SGBD relacional

◼ Posibles cargas de datos en objetos desde la

BBDD

❑ Cargar todos los datos al iniciar el sistema y crear

las instancias correspondientes

❑ No cargar ningún dato

❑ Cargar sólo parte de los datos

◼ Los pertenecientes al usuario identificado

◼ Los que solicite el usuario

◼ ….

Modelo usando un SGBD relacional

◼ Posibles formas de trabajo con los datos

❑ Si no están cargados en objetos
◼ Directamente contra la Base de Datos

❑ Si están cargados en objetos
◼ Trabajar sólo con los objetos

◼ Trabajar con los objetos y actualizar en ese momento la
Base de Datos (creando, modificando o eliminando
información)

◼ Al cerrar el sistema

❑ Si hay datos que no se han actualizado en la Base
de Datos, hacerlo

Modelo usando un SGBD relacional

◼ Para seguir este patrón utilizaremos la clase

GestorBD que tiene 2 métodos:

❑ Para realizar INSERT/DELETE/UPDATE (no

devuelven nada)

❑ Para realizar consultas tipo SELECT (deben

devolver el resultado de la consulta)

GestorBD

-execSQL(sentencia:String):void

-execSQL(sententcia:String): ResultadoSQL

Representa al

SGBD. Solo

tiene una

instancia.

Modelo usando un SGBD relacional

◼ Para trabajar con el resultado de una pregunta

SQL usaremos la clase ResultadoSQL con los

métodos (además de la constructora)

❑ next() → “selecciona” la siguiente (o primera) tupla

del resultado. Devuelve false si no hay más tuplas.

ResultadoSQL

-next():boolean

-getInt (atributo:String): Int

-getString (atributo:String): String

-getFloat (atributo:String): Float

-….

Cada vez que

se ejecute una

sentencia SQL

de tipo

SELECT, se

genera una

instancia

Modelo usando un SGBD relacional

◼ Para trabajar con el resultado de una pregunta

SQL usaremos la clase ResultadoSQL

❑ getTipoDatos (nombreatributo) → Obtiene el valor

de ese atributo en la tupla seleccionada (usando

next). Daremos por hecho que hay un método para

cada tipo de datos que se puede usar en la BBDD

ResultadoSQL

-next():boolean

-getInt (atributo:String): Int

-getString (atributo:String): String

-getFloat (atributo:String): Float

-….

Diagrama de comunicación. Ejemplo

◼ Caso de uso : Tomar libro prestado

❑ Hay que transformar el modelo del dominio en un

esquema relacional

Diagrama de comunicación. Ejemplo

:IU_TLP

Usuario

:GestorLibros

:GestorBD

:Biblioteca
1 → 2 →

2.1 →

1: Introduce datos y pulsa “Tomar en Préstamo”

2: TomarLibroPrestamo (signatura,numsocio)

2.1: laCopiaLibre=BuscarCopiaLibre (signatura)

2.1.1: execSQL(“SELECT CodCopiaLibro FROM Copia_Libro WHERE

LibroSignatura= %signatura% AND Libre=1”) : ResultadoSQL

Usando el símbolo % indicamos las variables

2.1.1 →

Seguimos necesitando las

clases Biblioteca y GestorLibros

para mantener la separación

MVC

Diagrama de comunicación. Ejemplo

:IU_TLP

Usuario

:GestorLibros

:Biblioteca
1 → 2 →

1: Introduce datos y pulsa “Tomar en Préstamo”

2: TomarLibroPrestamo (signatura,numsocio)

2.1: elCodigoCopiaLibre=BuscarCopiaLibre (signatura)

2.1.1: execSQL(“SELECT CodCopiaLibro FROM Copia_Libro WHERE

LibroSignatura= %signatura% AND Libre=1”) : ResultadoSQL

2.1.1.1: new ResultadoSQL()

2.1.2: next()

2.1.3: getInt (“CodCopiaLibro”): int

SIEMPRE hay que hacer un

next, aunque sea para

colocarnos en la primera tupla

El ResultadoSQL SIEMPRE se

genera desde GestorBD.

El acceso al ResultadoSQL

SIEMPRE se realiza desde las

clases de Control

:ResultadoSQL

:GestorBD

2.1 →

2.1.1 →

2.1.1.1

2.2.1.1

2.1.2 

2.1.3 

Diagrama de comunicación. Ejemplo

:IU_TLP

Usuario

:GestorLibros

:Biblioteca
1 → 2 →

2.1 →

:GestorPrestamos

:GestorSocios

2.2

2.3 

2.2.1 →

:ResultadoSQL

2.1.1.1

2.2.1.1

2.1.2 

2.1.3 

:GestorBD
2.1.1 →

2.2.2 →

2.2.3 →

2.3.1 →

2.3.2 →

Diagrama de comunicación. Ejemplo

:IU_TLP

Usuario

:GestorLibros

:Biblioteca

:GestorPrestamos

:GestorSocios

:ResultadoSQL

:GestorBD

MODELOVISTA CONTROLADOR

Diagrama de comunicación. Ejemplo
1: Introduce datos y pulsa “Tomar en Préstamo”

2: TomarLibroPrestamo (signatura,numsocio)

2.1: elCodigoCopiaLibre=BuscarCopiaLibre (signatura)

2.1.1: execSQL(“SELECT CodCopiaLibro FROM Copia_Libro WHERE

LibroSignatura= %signatura% AND Libre=1”) : ResultadoSQL

2.1.1.1: new ResultadoSQL()

2.1.2: next()

2.1.3: getInt (“CodCopiaLibro”): int

2.2: Numprestamos= ComprobarNumeroPrestamos(numsocio)

2.2.1: execSQL(“SELECT COUNT(*) AS numprestamos FROM Prestamo

WHERE SocioNumSocio= %numsocio%) : ResultadoSQL

2.2.1.1: new ResultadoSQL()

2.2.2: next()

2.2.3:getInt(“numprestamos”): int

2.3: AlmacenarPrestamo (numsocio,elCodigoCopiaLibre)

2.3.1: execSQL(“INSERT INTO Prestamo (Copia_LibroCodCopiaLibro,

SocioNumSocio) VALUES (%ElCodigoCopiaLibre%,%numsocio%,%fecha%)”)

2.3.2: execSQL(“UPDATE Copia_Libro SET Libre=0 WHERE

CodCopiaLibro= %elCodigoCopiaLibre%”)

No generan

ResultadoSQL

Diagrama de comunicación

◼ El diagrama de clases necesario para ese

caso de uso sería ligeramente distinto

Biblioteca

-TomarLibroPrestamo (signatura: string, numsocio: int)

GestorLibros

-BuscarCopiaLibre (signatura:string): int

GestorPrestamos

-AlmacenarPrestamo (aquien:int, que: int)

GestorSocios

-ComprobarNumeroPrestamos(quien:int):int
La clase frontera no ha variado.

La Vista (la interfaz gráfica) no se

modifica aunque se modifique la

forma de trabajar con el modelo

Arquitectura

◼ Descripción de la arquitectura en la fase de

análisis

❑ División del sistema en paquetes

◼ Paquetes de servicio: agrupan clases cuyo objetivo es

proporcionar servicios (ej: librerías externas)

◼ Paquetes de entidad: agrupan las clases del dominio

◼ Paquetes de interfaz: agrupan las clases relacionadas

con la interfaz gráfica

◼ Paquetes de control: agrupan las clases con la lógica

del proceso

