ADSI — TEMA 5

Analisis

Indice
Transformacion del Modelo del Dominio

o En una Base de Datos

o En un Diagrama de Clases
Diagrama de comunicacion

Arquitectura

Transformacion del MD

Tenemos gue decidir qué tipo de sistema
vamos a desarrollar

o Usando una Base de Datos relacional

Tendremos que definir las tablas, sus claves primarias,
sus claves extranjeras, etc.

o Orientado a Objetos
Tendremos que definir las clases, sus atributos, etc.

o Ambas
Tendremos que definir todo lo anterior

Es lo mas comun]

Transformacion del MD en BD

Cada entidad se transforma en una tabla con
Su propia clave primaria

Cliente Inmueble
-DNI -Caodigolnm
/ -Nombre -Metros
Si no tiene un -Apellidos -Situacién
atributo que =
sirva como
clave, anadimos
kuno en la tabla Cliente Inmueble
PK | DNI PK | Codigolnm
Nombre Metros
Apellidos Situacion

‘ Transformacion del MD en BD

= Si hay herencia, la clave primaria del padre

pasa a los hijos como clave extranjera

Inmueble \\
PK | Codigolnm
Metros
Situacion
Piso
PK |CodPiso Garajes
PK |CodGaraje
NumHabitacionas
FK1 | Codigolnm Cerrado?
FK1 | Codigolnm

Inmueble

-Caodigolnm
-Metros
-Situacion

VAN

Piso

-NumHabitaciones

Garaje

-Cerrado?

Transformacion del MD en BD

Una relacion Dbinaria.. Depende de la
cardinalidad de la relacion

o 1..* » La clave de la parte 1, pasa a la tabla de |a
parte * como clave extranjera

Piso
-NumHabitaciones
Piso Cliente
PK |CodPi -ONI ’
CodPiso @ -Nombre
o -Apellidos
NumHabitaciones
FK1 | Codigolnm
FK2 | DNI
Cliente
PK | DNI

Nombre
Apellidos

Transformacion del MD en BD

Una relacion Dbinaria.. Depende de la
cardinalidad de la relacion
o *.* p Se crea una tabla intermedia cuya clave

esta formada por la combinacion de las claves
primarias de las tablas de la relacion

ha visitado Inmueble
-Cadigolnm
Visitas -Metros
Q\\"\ ’ -Situacion
PK,FK1 | Codigolnm
PK,FK2 | DNI Cliente
-DMI
-Nombre
-Apellidos
- Inmueble
Cliente
Codigolnm
PK |DNI PK | Codigolnm
Nombre MEtrD§
Apellidos Situacion

‘ Transformacion del MD en BD

= Si hay una entidad asociacion, sus atributos
“viajan” con las claves

DatosEscritura

-FechaCompra .
-NombreMotario Piso
]

-NumHabitaciones

Cliente 1
-DNI
-Nombre
-Apellidos
Cliente \
PK |DNI /
Nombre
Apellidos Piso

PK CodPiso

NumHabitaciones
FK1 | Codigolnm

FK2 | DNI
FechaCompra
NombreMotario

‘ Transformacion del MD en BD

= Si hay una entidad asociacion, sus atributos
“viajan” con las claves

Inmueble
DatosVisita -Cédigoll'lm
-Horalisita -I\"I_etrosf)
-DuracionVisita -Situacion

Visitas

PK,FK1 | Codigolnm

Cliente /, PK,FK2 | DNI
-DNI
-Nomb .
-Agellidrgs HoraVisita

DuracionVisita

Inmueble Cliente
PK | Codigolnm PK | DNI
Metros
Situacion Nompre
Apellidos

Transformacion del MD en BD

Una relacion multiple se convierte en una
tabla cuya clave principal es la combinacién
de las claves primarias de las entidades de la

Cliente

-DMI
-Mombre
-Apellidos

\ "
Asesores

Piso

-NumHabitaciones

-CodPersonal [~——W

-MNombre

Asesor

PK

CodPersonal

MNombre

"

Piso

PK |CodPiso

Cliente

PK | DNI

MumHabitaciones

FK1 | Codigolnm

FK2 |DNI

Nombre
Apellidos

Asesorias

PK,FK1
PK,FK2
PK,FK3

CodPersonal
DNI
CodPiso

‘ Transformacion del MD en BD

= Si en la relacion mdultiple hay atributos, estos
van a la nueva tabla

Cliente

-0
-Mombre

-Apellidos s Asesorias

-MumHabitaciones

PK,FK1 | CodPersonal
PK,FK2 | DNI
PK,FK3 | CodPiso

Asesores

-CodPersonal
-Nombire

OpiniénAsesor

|
|
|
|
|
|
|
F

Josasyugiudo-

ElIOSasyS0le(]

‘ Transformacion del MD en BD

= Ejemplo

Asesores

-CodPersonal
-Mombre

Garaje
1 -Cerrada?
| |
Cliente ha visitado
-DMI
‘Nombre . L Inmueble
-Apellidos) -Cadigolnm
* -Metros
-Situacion

Piso

-NumHabitaciones

AN

|
|
|
|
|
|
|
|
L

Josasyuoiudo-

BlIOSasys0)eq

‘ Transformacion del MD en BD

= Ejemplo

Inmueble Garajes Piso
PK |Codigolnm PK | CodGaraje PK |CodPiso Asesor
Metros Cerrado? NumHabitaciones PK | CodPersonal
Situacion F1 | Codigalnm FK1 | Codigolnm
FKZ2 | DNI FK2 | DNI Nombre
Cliente Visitas Asesorias
PK |DNI PK,FK1 | Codigolnm PK,FK1 | CodPersonal
PK,FK2 | DNI PK,FK2 | DNI
Nombre PK,FK3 | CodPiso
Apellidos
OpinionAsesor

Transformacion del MD en DC

Cada entidad sera una clase con sus
atributos y el tipo de datos correspondiente

Cliente Inmueble
-DNI -Codigolnm
-Nombre -Metros
-Apellidos -Situacion
Cliente :a. f-;
SNIELT Inmueble
-Nombre : string :ﬁg?:gglﬂr:t: int
gt ele 0 I _Situacion : string

Transformacion del MD en DC

Las relaciones binarias hay 3 formas de
Implementarlas, elegir entre una u otra
depende la funcionalidad que tenga el

SIStema ha visitado * Inmueble

-Cdadigolnm
-Metros
-Situacion

-DMI
-Nombre
-Apellidos

Las 3 son igual Cliente
de correctas

o Implementar la relacion en un lado (Cliente)
o Implementar la relacion en el otro lado (Inmueble)
o Implementar la relacion en los dos lados

Transformacion del MD en DC

Las relaciones, se implementaran en forma
de Atributos o de Listas de Elementos

Una vez decidido en qué lado se implementa

(puede ser en los dos)

Si la cardinalidad de Ila relacion EN EL LADO
CONTRARIO es 1, lo implementaremos mediante un
atributo

Si la cardinalidad de la relacibn EN EL LADO
CONTRARIO es *, lo implementaremos mediante una
lista de elementos

Transformacion del MD en DC

Implementar la relacion en un lado (Cliente)

o Como un cliente ha visitado * Inmuebles, se
Implementa mediante una lista

Cliente Inmueble
-DNI - int | -Codigolnm : int
-Nombre : string -Metros : int
-Apellidos_-_string -Situacion : string
-InmueblesVisitados : Listalnmuebles

Transformacion del MD en DC

2 Ventajas:

Dado un cliente se puede ver facilmente qué inmuebles

ha visitado.

Anadir una visita, consiste en anadir a la lista,
referencia del inmueble

o Desventajas:

la

Dado un inmueble no se puede ver facilmente quiéen lo ha

visitado

Cliente

-DNI - int

-Nombre : string
-Apellidos_ - string

Inmueble

-lnmueblesVisitados : Listalnmuebles

-Codigolnm : int
-Metros : int
-Situacion : string

Transformacion del MD en DC

Implementar la relacion en el otro lado
(Inmueble)

2 Como un inmueble ha podido ser visitado por *
Clientes, se implementa mediante una lista

Cliente Inmueble
-DNI : int -Codigolnm : int
-Nombre : string —Mletms_ : int .
-Apellidos : string -Situacion : string
-QuienloVisita : ListaClientes

Transformacion del MD en DC

2 Ventajas:

Dado un Inmueble se puede ver facilmente quién lo ha

visitado.

Anadir una visita, consiste en anadir a la lista,

referencia al Cliente.
o Desventajas:

la

Dado un cliente no se puede ver facilimente qué

Inmuebles ha visitado

Cliente

-DNI : int
-Nombre : string
-Apellidos : string

Inmueble

-Codigolnm : int
-Metros : int

=Situacién.-string

-QuienloVisita : ListaClientes

Transformacion del MD en DC

Implementar la relacidon en ambos lados

2 Como las dos cardinalidades son *, se implementa
mediante dos listas

o Ventajas:
Puedo saber faciimente toda la informacion.

o Desventajas:
Anadir una visita supone actualizar las dos listas.

Cliente Inmueble
-DINI : int -Codigolnm : int
-Mombre : string -Metros : int
=Apellidos - string -Situacion--string

-InmueblesVisitados : Listalnmuebles -QuienloVisita : ListaClientes

Transformacion del MD en DC

Si hay herencia cada entidad sera una clase y
desde las clases hijas se accedera a los
atributos y operaciones del padre gracias a los
mecanismos de la OO

Inmueble
-Codigolnm
Inmueble “Metros
-Codigolnm : int Garaje \ -Situacién
-Metros : int -Cerrado : bool N N\
-Situacion : string
Piso
-NumHabitaciones : int Piso Garaje
-NumHabitaciones -Cerrado?

‘ Transformacion del MD en DC

= Si hay una asociacion, se trata como si fuera
una entidad con sentido de manera

Independiente

DatosEscritura

-FechaCompra .
-MombreMotario Piso

-MumHabitaciones

Cliente

=DM - int
-Mombre : string . 1
-Apellidos : string Cliente
-SusEscrituras : ListaDatosEscritura DN

-Nombre

-Apellidos
DatosEscritura
-FechaCompra : Date
-NombreNotario : string

-LaPropiedad : Piso

Cliente DatosEscritura

=DM Piso
-Mombre -FechaComprﬁ FMumHabitacionas
Piso -Apellidos 1 * |-MombreMotario 1 q

-NumHabitaciones © int

[Es un paso intermedio, no figura en ningun sitio }

‘ Transformacion del MD en DC

= Una relacion multiple se trata como si fuera

una nueva entidad Es un paso intermedio, no figura
en ningun sitio

Cliente
Cliente DI
~Mombre
-DNI L Apallidos v
-Mom
—Agellli:::lrgs I—' FMumHabitaciones
Piso 1
*
-MumHabitaciones Frve—— FY— 1
—
* FCodPersonal 1
FMombre

Asesores . \\
-CodPersonal [———
-Nombre Cliente
- =DM int
Piso

-Mombre : string

-MumHabitaciones : int -Apellidos © string

-SusEscrituras @ ListaDatosEscritura
-susAsesorias ; ListaAsesorias

Asesoria
Asesor i i
r -Quienlahizo : Asesor
rCodPersonal : int -SobreQuéPiso : Piso

-Mombre : string

‘ Transformacion del MD en DC

= Si en la relacion hay atributos, estos van a la
nueva clase

Cliente Cliente
-ONI -DNI :int
Pivri [Apelicos . string
. - i ; st
Apellidos Piso -SusEscrituras | ListaDatosEscritura
— -susAsesorias | ListaAsesorias
-NumHabitaciones
. Piso
-MumHabitaciones : int
o e —
-CodPersonal -CodPersonal : int
Nombre -Nombre : string
-
Asesoria

-Quienlahizo : Asesor
-SobreQuePiso ; Piso
-OpinidnAsesor : string

Josasyupiudo-

B1I0S8SYS0]E(]

‘ Transformacion del MD en DC

= Ejemplo

Asesores

-CodPersonal
-Mombre

Garaje
1 -Cerrada?
| |
Cliente ha visitado
-DMI
‘Nombre . L Inmueble
-Apellidos] -Cadigolnm
* -Metros
-Situacion
Piso Z.l
-MumHabitaciones |

|
|
|
|
|
|
|
|
L

Josasyuoiudo-

BlLIOSasysoleq

‘ Transformacion del MD en DC

= Ejemplo

Cliente
=DM ; it
-Mombre : string
-Apellidos ; string
-susAsesorias | ListaAsesorias
-sushisitas ; Listalnmuebles
-susPisos : ListaPisos
-susGarajes : ListaGarajes

Asesoria

-Cluienlahizo : Asesor
-SobreQuéPiso ; Piso

Piso

Garaje

-NumHabitaciones ; int

-Cerrado : bool

Inmueble
-Codigolnm : int Asesor
-Metros int -CodPersonal : int

-Situacion : string -Mombre : string

Diagrama de comunicacion

Hasta UML 1.4 llamado Diagrama de
colaboracion

Esta Fase esta especialmente orientada a su
uso con Orientacion a Objetos

Se obtendran mas clases para anadir al
diagrama de clases - Controlador

Se obtendra gué operaciones se necesitan
en cada clase

Diagrama de comunicacion

Se pueden hacer patentes nuevas
necesidades de relacion entre las clases

Se va analizar teniendo en mente la
separacion entre

o Vista (Interfaces)
o Modelo (Datos)

o Controlador (Logica)

Trabajaremos con una adaptacion de los patrones
MVC (Modelo — Vista — Controlador)
MVP (Modelo — Vista — Presentador)

Diagrama de comunicacion

Las clases de la vista so6lo deben trabajar con
tipos de datos simples

De este modo, son independientes

o No hay que modificarlas si cambia el
funcionamiento interno

o Se pueden reutilizar

o0 Se pueden desarrollar distintas interfaces

Intercambiables
Una web
Una app
Un programa Java

Diagrama de comunicacion

Para devolver informacion estructurada a la
Vista usaremos JSON

JSON es un formato textual formado por
pares nombre : valor entre llaves

a

a

a

DEBERIA TRABAJAR CON

Entero: { edad: 21 } OBJETOS

Los valores pueden SEr [LA VISTA (LA INTERFAZ) NO J

String: { nombre: “lker” }
Boolean: { aprobado: True }
Array: { aficiones: [‘cine”, “deporte”, “musica’] }

Objeto JSON: { est: {nombre: “Iker” , edad: 21, aprobado: True} }

‘ Diagrama de comunicacion

= Vamos a trabajar con una separacion
Modelo-Vista-Controlador estricta

o Facilitard la modificacion de alguna parte sin
afectar al resto

) e

CONTROLADOR MODELO

=P |nteracciones permitidas

Diagrama de comunicacion
En el Diagrama de comunicacion se
representa

o Las clases involucradas en la ejecucion de un
Caso de Uso

Clase 1

o Las comunicaciones que se producen entre
dichas clases

1:mensaje (param): resultado -
Clase 1 Clase 2

Diagrama de comunicacion

Las comunicaciones siguen el formato:
orden : nombre (parametros)

o Orden: Numero que indica el orden de ejecucion
2 Nombre: nombre de la operacion

o Parametros: parametros necesarios en la
operacion

_ _ 1:getNombre () : string—> :
ListaEstudiantes Estudiante

Diagrama de comunicacion

El orden puede ir anidandose para indicar
“subpasos” de una operacion

1.1:getNombre ():string -

IU_MostrarEstudiantes

1:MostrarDatosEstudiante () 2

1.2:getApellidos ():string -

ListaEstudiantes

Estudiante

public void MostrarDatosEstudiante(){
String Nom;
String Ap;

Nom= est.getNombre();
Ap= est.getApellidos();

public String getNombre(){
return this.nombre;

}

public String getApellidos(){
return this.apellidos;

}

Diagrama de comunicacion

Las Interacciones de

los actores también

aparecen en el diagrama de comunicacion

IU_MostrarEstudiantes

ListaEstudiantes

2.1:getNombre ():string =
2.2:getApellidos ():string =

2:MostrarDatosEstudiantes () 2

Q 1: Pulsar “Listar Estudiantes” =

Usuario

Estudiante

Diagrama de comunicacion

Se puede Indicar el resultado de una

operacion

o Se recomienda usarlo solo cuando se considera
necesario para una mejor
comprension del diagrama

estrictamente

ListaEstudiantes

1.1:getNombre () =2

<€--1.2:return nombre

Estudiante

1:getNombre (): string =

ListaEstudiantes

Estudiante

Diagrama de comunicacion

En las

IU_MostrarEstudiantes

devoluciones a Ia
especificaremos la estructura del JSON

1:MostrarDatosEstudiantes (): JSON -

Interfaz

{estudiantes : [{ nombre:string,

apellidos: string,
edad: int}

]

ListaEstudiantes

Diagrama de comunicacion

El resultado de una operacion se puede
recoger en una variable y usarla mas
adelante

_ _ 1: nom= getNombre () -2 _
ListaEstudiantes Estudiante

«. operacion (nom) -

Diagrama de comunicacion

Se pueden Indicar condiciones, pero es
mejor hacer diagramas de comunicacion
distintos para cada situacion

_ _ 1: edad= getEdad() = _
ListaEstudiantes Estudiante

« [edad>18]: operacion (nom) -

[Solo se ejecuta cuando la condicion es True]

Diagrama de comunicacion

También se pueden indicar repeticiones

ListaEstudiantes

1: Matricula= getListaAsignaturas() -

\

[El asterisco indica repeticion]

Estudiante

« *[para cada asignatura en Matricula] operacion (nom) -
N\

Diagrama de comunicacion. Ejemplo

Caso de uso : Tomar libro prestado

o Flujo de eventos:

El usuario introduce la signatura del libro y su numero

de socio

Si no hay ninguna copia libre

0 Se le avisa al usuario

Si hay alguna copia libre

o Si el usuario ha llegado al maximo de prestamos
Se le avisa

o Sino ha llegado al maximo
Se almacena el nuevo préstamo y se le muestra por
pantalla el codigo de la copia que se le presta

Diagrama de comunicacion. Ejemplo

Caso de uso : Tomar libro prestado

o Prototipo de la interfaz

CASO DE USO: TOMAR COPIA LIBRO EN PRESTAMO

SIGNATURA LIBRO: |

NUMERO SOCIO: |

Area de texto donde aparecera el nimero de copia del libro que se
ha tomado en préstamo.

Si no hay ninguna libre o si el socio ha sobrepasado su hdmero
maximo de préstamos entonces se indicara aqui mismo.

TOMAR EN PRESTAMO RESERVAR LIBRO

_ Cancel |

Diagrama de comunicacion. Ejemplo

Caso de uso : Tomar libro prestado

o Modelo del dominio

) 1 1..*) :
Libro Copia_Libro
-Signatura -CodCopiaLibro
-Libre?
0. Prestamo
_____________________ -Fecha
o“*
Socio

-NumSocio

Diagrama de comunicacion. Ejemplo

Caso de uso : Tomar libro prestado

o Voy a ignorar la persistencia de la informacion y
voy a suponer gue tengo toda la informacion

cargada en objetos %Modelo }
Diagrama de clases
Libro Copia_Libro

-CodCopiaLibro:int
-Libre?:boolean

-Signatura:String
-SusCopias:ListaCopia_Libro

Socio Prestamo
-Qué: Copia_Libro
-Aquién : Socio
-Fecha; Date

-NumSocio:Int
-SusPrestamos: ListaPrestamo

Diagrama de comunicacion. Ejemplo

Caso de uso : Tomar libro prestado

o Falta el Controlador

Seran las clases gue contengan la l6gica del caso de
uso

Recogeran lo que ocurra en la interfaz y trabajaran con
el modelo

Tendran una unica instancia (MAES)
Pueden contener una lista de objetos que gestionar

Cuantas y cuales poner depende del diseno

‘ Diagrama de comunicacion. Ejemplo

1>
IU_TLP

Usuario

1: Introduce datos y pulsa “Tomar en Préstamo”

Diagrama de comunicacion. Ejemplo

1->

IU_TLP

22>

Usuario

‘Biblioteca

Usamos una unica clase\
gue actuara de frontera
entre la Vista y el
Controlador. Sera la Unica
que conozca “las tripas”
del controlador y facilitara
el mantenimiento y la

\ampliacién del sistema/

1: Introduce datos y pulsa “Tomar en Préstamo”
2. TomarLibroPrestamo (signatura,numsocio)

Diagrama de comunicacion. Ejemplo

21 :GestorLibros

Usuario

1: Introduce datos y pulsa “Tomar en Préstamo”
2. TomarLibroPrestamo (signatura,numsocio)
2.1: laCopiaLibre=BuscarCopiaLibre (signatura)

(_)
Para encontrar una copia a

L hay que encontrar el libro.

5 N > ~
U TLP :Biblioteca El GestorLibros

conoce la
referencia a todos
los libros que
existen en el
sistema (la clase
necesita un
atributo para

partir de la signatura, primero \ agruparlos) /

Diagrama de comunicacion. Ejemplo

211>

/ :Libro

21 :GestorLibros

1> | 2> [NO SEPUEDEACCEDER)
INSTANCIA CONCRETA
Usuario CONOCIENDO EL VALOR DE
UNO DE SUS ATRIBUTOS
1: Introduce datos y pulsa “Tomar en Préstamo”
2. TomarLibroPrestamo (signatura,numsocio)
2.1: laCopiaLibre=BuscarCopiaLibre (signatura)
2.1.1: getSignatura() : String
—\
4)

Se recorren todas las instancias que existan de Libro obteniendo su
signhatura y comparandola con la dada para encontrar la instancia
concreta con la gue tenemos que trabajar

Diagrama de comunicacion. Ejemplo

211>
2.1.2 >

/ :Libro

21 :GestorLibros

1-> 2 >
AU _TLP :Biblioteca

Usuario

1: Introduce datos y pulsa “Tomar en Préstamo”
2. TomarLibroPrestamo (signatura,numsocio)
2.1: laCopiaLibre=BuscarCopiaLibre (signatura)
2.1.1: getSignatura() : String
2.1.2: ObtenerCopialLibre(): Copia_Libro

/

Una vez encontrada la instancia concreta, ejecutamos una operacion que nos devuelva una
copia de ese libro que esté libre. Podemos hacerlo asi porque el Libro tiene la referencia a
SusCopias

Diagrama de comunicacion. Ejemplo

2.1.1~>
1.2-> .
; :Libro
21 :GestorLibros
\2.1.2.1 J
1-> 2 > o _ _
AU _TLP :Biblioteca :Copia_Libro
Usuario

1: Introduce datos y pulsa “Tomar en Préstamo”
2. TomarLibroPrestamo (signatura,numsocio)
2.1: laCopiaLibre=BuscarCopiaLibre (signatura)
2.1.1: getSignatura() : String
2.1.2: ObtenerCopiaLibre(): Copia_Libro
2.1.2.1: getlLibre?() : boolean/;

La operacion de la clase Libro recorrera las instancias recogidas en el atributo
SusCopias hasta que encuentre una libre

Diagrama de comunicacion. Ejemplo

1: Introduce datos y pulsa “Tomar en Préstamo”
2. TomarLibroPrestamo (signatura,numsocio)

2.1: laCopiaLibre=BuscarCopiaLibre (signatura)

2.1.1: getSignatura() : String
2.1.2: ObtenerCopiaLibre(): Copia_Libro
2.1.2.1: getLibre?() : boolean

2.2: elSocio= BuscarSocio (numsocio

corresponde a
ese NUMsocio

Hay que buscar
el objeto que se

J

Comprobando

2.2.1: getNumSocio() :int
2.3. ComprobarNumeroPrestamos (elSocio) ,
. : : - cuantos
2.3.1: getMaximo?() :boolean

2.4. AlmacenarPrestamo (elSocio,laCopialLibre)

2.4.1: new (elSocio, laCopiaLibre, now())
2.4.2: setLibre(False)

2.5: ObtenerCodCopia (laCopiaLibre)
2.5.1: getCodCopia(): int

Para poder mostrarlo en
la interfaz

_

prestamos tiene
en su lista

J

La fecha actual
siempre esta
disponible

J

Diagrama de comunicacion. Ejemplo

1->

Usuario

IU_TLP

22>

2.1->

‘Biblioteca

2.2 >
2.3 >

2.1.1~>
2.1.2 >
/ ‘Libro
:GestorLibros
\2.1.2.1 J
2.4 > 2.4.2 > :Copia_Libro
25 2> 25.1~>
:GestorPrestamos \
‘Prestamo
2.4.1 >
:GestorSocios
\ :S0Cio
2.2.1->

2.3.1->

Diagrama de comunicacion. Ejemplo

-

~

A

Usuario

IU_TLP

P

:GestorLibros

~

[

‘Biblioteca

:GestorPrestamos K

‘GestorSocios

\

VISTA

Z\

_.CONTROLADOR /

-

/

:Libro

~

\

:Copia_Libro

e
N\

‘Prestamo

:Socio

MODELO/

Diagrama de comunicacion

Se pueden usar estereotipos de las clases, y
de este modo indicar qué tipo de clases son

Existen 3 estereotipos:

o Clase Frontera (Vista) @

o Clase Control (Controlador) @

o Clase Entidad (Modelo) @

Diagrama de comunicacion. Ejemplo

2.1.1 >
2.1.2 >
e
Gestorleros Libro 21214
%@ﬁ @ 24> 242>
:Blblioteca
Usuario 1U_TLP @ .Copia_Libro
:GestorPrestmO
2905 2.4.1 >

23> :Prestamo
w2213

:GestorSocios 2.2.1 2
2.3.1 2> :Socio

Diagrama de comunicacion

A partir del diagrama de comunicacion obtenemos el
diagrama de clases necesario para ese caso de uso

Libro Copia_Libro Socio

_Signatura: Stnng -C_OdCOpiaLibrO: int -Numsocio:int
-SusCopias:ListaCopia_Libro -Libre?: boolean -susPrestamos: ListaPrestamo
- -getLibre?(): Boolean
-setLibre(valor:boolean)
-getCodCopia(): int

-getSignatura():String

-getNumSocio():int
-ObtenerCopiaLibre(): Copia_Libro

-getMaximo?():boolean

Biblioteca
Prestamo
-Qué: Copia_Libro -TomarLibroPrestamo (signatura: string, numsocio: int)
-Aquién : Socio
-Fecha: Date
_ _ - GestorPrestamos
-Prestamo (aquien:Socio, que: Copia_Libro, cuando: Date)

-AlmacenarPrestamo (aquien:Socio, que: Copia_Libro)
-ObtenerCodCopia(cual:Copia_Libro)

GestorLibros GestorSocios

“TodosLibros: Listal ibros -TodosSocios: ListaSocios

-BuscarCopiaLibre (signatura:string): Copia_Libro -BuscarSocio (num:int) : Socio
-ComprobarNumeroPrestamos(quien:Socio)

Diagrama de comunicacion

A partir del diagrama de clases necesario
para cada caso de uso
o Se unifican tomando decisiones

Donde colocar los atributos

Qué clases de control utilizar

Que operaciones situar en cada clase de control
Que operaciones se pueden reutilizar

Se obtiene un uUnico diagrama de clases para
todo el sistema

Modelo usando un SGBD relacional

_a Orientacion a Objetos no proporciona
persistencia de los datos

Para lograr persistencia incluiremos una BBDD

Nuestros diagramas seran independientes del
SGBD relacional gue usemos para almacenar

los datos
MySQL
Oracle
Access

Modelo usando un SGBD relacional

Cuando el sistema arranca, los datos estan
almacenados en la Base de Datos

Cuando el sistema finaliza, los datos tienen
gue estar actualizados en la Base de Datos

Cuando el sistema esta funcionando, los
datos pueden estar

o Cargados en objetos
o Almacenados en la Base de Datos

Modelo usando un SGBD relacional

Elegir el momento en el que los datos de la
Base de Datos se cargan en los objetos (si
se hace) es una decision del analisis/diseno

Elegir cuando se actualizan los datos de los
objetos en la Base de Datos (es obligatorio
hacerlo) es decision del analisis/diseno

Razones a tener en cuenta

o Eficiencia
o Necesidades de actualizacion en tiempo real

Modelo usando un SGBD relacional

Posibles cargas de datos en objetos desde la
BBDD

o Cargar todos los datos al iniciar el sistema y crear
las instancias correspondientes

o No cargar ningun dato

o Cargar solo parte de los datos
Los pertenecientes al usuario identificado
Los que solicite el usuario

Modelo usando un SGBD relacional

Posibles formas de trabajo con los datos

o Si no estan cargados en objetos
Directamente contra la Base de Datos

o Si estan cargados en objetos

Trabajar solo con los objetos

Trabajar con los objetos y actualizar en ese momento la
Base de Datos (creando, modificando o eliminando

informacion)

Al cerrar el sistema

o Si hay datos gue no se han actualizado en la Base
de Datos, hacerlo

Modelo usando un SGBD relacional

Para seguir este patron utilizaremos la clase
GestorBD que tiene 2 metodos:

o Para realizar INSERT/DELETE/UPDATE (no
devuelven nada)

o Para realizar consultas tipo SELECT (deben
devolver el resultado de la consulta)

Representa al GestorBD
SGBD. Solo
tiene una
instancia. -execSQL(sentencia: String):void
\ -execSQL(sententcia:String): ResultadoSQL

Modelo usando un SGBD relacional

Para trabajar con el resultado de una pregunta
SQL usaremos la clase ResultadoSQL con los
metodos (ademas de la constructora)

o next() = “selecciona’” la siguiente (o primera) tupla
del resultado. Devuelve false si no hay mas tuplas.

/Cada vez que ResultadoSQL
Se ejecute una
sentencia SQL -next():boolean

de tipo -getint (atributo:String): Int
-getString (atributo:String): String
SELECT, se -getFloat (atributo:String): Float
genera una -

\ instancia j

Modelo usando un SGBD relacional

Para trabajar con el resultado de una pregunta
SQL usaremos la clase ResultadoSQL

o getTipoDatos (nombreatributo) = Obtiene el valor
de ese atributo en la tupla seleccionada (usando
next). Daremos por hecho que hay un metodo para
cada tipo de datos gue se puede usar en la BBDD

ResultadoSQL

-next():boolean

-getint (atributo:String): Int
-getString (atributo:String): String
-getFloat (atributo:String): Float

Diagrama de comunicacion. Ejemplo

Caso de uso : Tomar libro prestado

o Hay que transformar el modelo del dominio en un
esquema relacional

Libro Copia_Libro
|/ Signatura varchar(255) CodCopiaLibro integer(10)
lem e m e - Libre bit N

™ LibroSignatura varchar(255)

- 1 1.% : ,
Libro Copia_Libro
-Signatura -CodCopiaLibro
-Libre?
*

0 ” PreSta m 0 Prestamo
"""""""" -Fecha : Copfa_Limec:dCopiaLibm {nreger(f 0) W
-/ SocioNumSocio integer(10) |
0.* Fecha time(7) D_j]J

Socio j

-NumSaocio =
| NumSocio integer(10)

Diagrama de comunicacion. Ejemplo

1->

Usuario

IU_TLP

22>

2.1->

:GestorLibros

27 :GestorBD

‘Biblioteca

.

Seguimos necesitando las
clases Biblioteca y GestorLibros
para mantener la separacion
MVC

J

1: Introduce datos y pulsa “Tomar en Préstamo”
2. TomarLibroPrestamo (signatura,numsocio)
2.1: laCopiaLibre=BuscarCopiaLibre (signatura)
2.1.1: execSQL(“SELECT CodCopialLibro FROM Copia_Libro WHERE
LibroSignatura= %signatura% AND Libre=1") : ResultadoSQL

W

Usando el simbolo % indicamos las variables]

Diagrama de comunicacion. Ejemplo

r

El ResultadoSQL SIEMPRE se
genera desde GestorBD.
El acceso al ResultadoSQL
SIEMPRE se realiza desde las

~

:GestorLibros

2_1_1/ :GestorBD

2.1.1.1

2.2.1.1

0\ clases de Control Y 2.1 >
1o 2> N
U TLP :Biblioteca
Usuario

2124
2.1.34

1: Introduce datos y pulsa “Tomar en Préstamo”
2. TomarLibroPrestamo (signatura,numsocio)
2.1: elCodigoCopiaLibre=BuscarCopiaLibre (signatura)
2.1.1: execSQL(“SELECT CodCopialLibro FROM Copia_Libro WHERE
LibroSignatura= %signatura% AND Libre=1") : ResultadoSQL

2.1.1.1: new ResultadoSQL()

2.1.2: next()

2.1.3: getint ("CodCopialLibro™): int

‘ResultadoSQL

SIEMPRE hay que hacer un
next, aunque sea para
colocarnos en la primera tupla

Diagrama de comunicacion. Ejemplo

1->

Usuario

IU_TLP

‘GestorSocios

2.3.1->
:GestorPrestamos 2322 :GestorBD
2.1.1
2 1 > - :GestorLibros 2.1.1.13
2.31 2.2.1.14
53 2.1.24
‘Biblioteca 2131
:ResultadoSQL
2.24

‘ Dlz}grama\

X

Usuario

de comunicaciéon. Ejemplo

1 N
:GestorPrestamos :GestorBD
:GestorLibros /
AU _TLP :Biblioteca
‘ResultadoSQL
:GestorSocios /
VISTA) _CONTROLADOR /| MODELO ,

Diagrama de comunicacion. Ejemplo

1: Introduce datos y pulsa “Tomar en Préstamo”
2. TomarLibroPrestamo (signatura,numsocio)
2.1: elCodigoCopiaLibre=BuscarCopiaLibre (signatura)
2.1.1: execSQL(“SELECT CodCopialLibro FROM Copia_Libro WHERE
LibroSignatura= %signatura% AND Libre=1") : ResultadoSQL
2.1.1.1: new ResultadoSQL()
2.1.2: next()
2.1.3: getint ("CodCopiaLibro”): int
2.2: Numprestamos= ComprobarNumeroPrestamos(numsocio)
2.2.1: execSQL(“SELECT COUNT(*) AS numprestamos FROM Prestamo
WHERE SocioNumSocio= %numsocio%) : ResultadoSQL

No generan

2.2.2: next() ResultadoSQL

2.2.3:getInt(“numprestamos”): int
2.3. AlmacenarPrestamo (numsocio,elCodigoCopiaLibre)

2.3.1: execSQL(“INSERT INTO Prestamo (Copia_LibroCodCopiaLibro,
SocioNumSocio) VALUES (%EICodigoCopiaLibre%,%numsocio%,%fecha%)”)

2.3.2: execSQL("UPDATE Copia_Libro SET Libre=0 WHERE
CodCopiaLibro= %eICodigoCopiaLibreO/o”)

2.2.1.1: new ResultadoSQL() [

Diagrama de comunicacion

El diagrama de clases necesario para ese
caso de uso seria ligeramente distinto

GestorLibros

Biblioteca

-BuscarCopiaLibre (signatura:string): int

-TomarLibroPrestamo (signatura: string, numsocio: int)

GestorSocios

-ComprobarNumeroPrestamos(quien:int):int

GestorPrestamos

-AlmacenarPrestamo (aquien:int, que: int)

\.

La clase frontera no ha variado.
La Vista (la interfaz grafica) no se
modifica aunque se modifique la
forma de trabajar con el modelo

J

Arquitectura

Descripcion de la arquitectura en la fase de
analisis
o Division del sistema en paguetes

Paguetes de servicio: agrupan clases cuyo objetivo es
proporcionar servicios (ej: librerias externas)

Paquetes de entidad: agrupan las clases del dominio

Paquetes de interfaz: agrupan las clases relacionadas
con la interfaz grafica

Paquetes de control: agrupan las clases con la lI6gica
del proceso

